\[ \cdot \]
|
\[ \times \]
|
\[ \circ \]
|
\[ \ast \]
|
\[ \div \]
|
\[ \pm \]
|
\[ \equiv \]
|
\[ \propto \]
|
\[ \sim \]
|
\[ \cong \]
|
\[ \approx \]
|
\[ \neq \]
|
\[ \leq \]
|
\[ \geq \]
|
\[ \ll \]
|
\[ \gg \]
|
\[ \lvert a \rvert \]
|
\[ \left( a \right) \]
|
\[ \left[ a \right] \]
|
\[ \left\{ a \right\} \]
|
\[ {x}^{n} \]
|
\[ {x}_{i} \]
|
\[ {x}_{i}^{n} \]
|
\[ f_{\textrm{Text}} \]
|
\[ \vec{x} \]
|
\[ \dot{x} \]
|
\[ \ddot{x} \]
|
\[ x^{\prime} \]
|
\[ \bar{x} \]
|
\[ \tilde{x} \]
|
\( \overrightarrow{abc} \)
|
\( \overline{abc} \)
|
\[ \frac{x}{y} \]
|
\[ a\frac{b}{c} \]
|
\[ \sqrt{x} \]
|
\[ \sqrt[n]{x} \]
|
\[ \sum_{i=1}^{n} \]
|
\[ \prod_{i=1}^{n} \]
|
\[ \int_{0}^{2\pi} \]
|
\[ \oint \]
|
\[ \hbar \]
|
\[ \ell \]
|
\[ \mathrm{N} \]
|
\[ \mathbf{N} \]
|
\[ \mathbb{N} \]
|
\[ \mathcal{N} \]
|
\[ \land \]
|
\[ \lor \]
|
\[ \mid \]
|
\[ \parallel \]
|
\[ \nparallel \]
|
\[ \perp \]
|
\[ \infty \]
|
\[ \partial \]
|
\[ \nabla \]
|
\[ \triangle \]
|
\[ \forall \]
|
\[ \exists \]
|
\[ \in \]
|
\[ \notin \]
|
\[ \subset \]
|
\[ \supset \]
|
\[ \subseteq \]
|
\[ \emptyset \]
|
\[ \rightarrow \]
|
\[ \mapsto \]
|
\[ \Rightarrow \]
|
\[ \uparrow \]
|
\[ \Uparrow \]
|
\[ \leftrightarrow \]
|
\[ \Leftrightarrow \]
|
\[ \nearrow \]
|
\[ \sin \]
|
\[ \cos \]
|
\[ \tan \]
|
\[ \min \]
|
\[ \max \]
|
\[ \lim \]
|
\[ \log \]
|
\[ \ln \]
|
\[ \alpha \]
|
\[ \beta \]
|
\[ \gamma \]
|
\[ \delta \]
|
\[ \epsilon \]
|
\[ \varepsilon \]
|
\[ \zeta \]
|
\[ \eta \]
|
\[ \theta \]
|
\[ \vartheta \]
|
\[ \iota \]
|
\[ \kappa \]
|
\[ \lambda \]
|
\[ \mu \]
|
\[ \nu \]
|
\[ \xi \]
|
\[ o \]
|
\[ \pi \]
|
\[ \rho \]
|
\[ \varrho \]
|
\[ \sigma \]
|
\[ \varsigma \]
|
\[ \tau \]
|
\[ \upsilon \]
|
\[ \phi \]
|
\[ \varphi \]
|
\[ \chi \]
|
\[ \psi \]
|
\[ \omega \]
|
\[ \Gamma \]
|
\[ \Delta \]
|
\[ \Theta \]
|
\[ \Lambda \]
|
\[ \Xi \]
|
\[ \Pi \]
|
\[ \Sigma \]
|
\[ \Upsilon \]
|
\[ \Phi \]
|
\[ \Psi \]
|
\[ \Omega \]
|
\[ x_{1/2} = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \]
|
\[ a^{\frac{m}{n}} = \sqrt[n]{a^m} \]
|
\[ a^{-r} = \frac{1}{a^r} \]
|
\[ \log_a \frac{b}{c} = \log_a b - \log_a c \]
|
\[ \log_a b^r = r \cdot \log_a b \]
|
\[ \frac{\overline{ZA}}{\overline{ZA^{\prime}}} = \frac{\overline{AB}}{\overline{A^{\prime} B^{\prime}}} \]
|
\[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{a}{b} \]
|
\[ c^2 = a^2 + b^2 -2ab \cos \gamma \]
|
\[ \left( \sin \varphi \right)^2 + \left( \cos \varphi \right)^2 = 1 \]
|
\[ \lim\limits_{x \rightarrow +\infty} \frac{x^r}{e^x} = 0 \quad (r>0) \]
|
\[ f^{\prime}(x) = \lim\limits_{x \rightarrow x_0} \frac{f(x) - f(x_0)}{x-x_0} \]
|
\[ \left( x^r\right)^{\prime} = r \cdot x^{r-1} \]
|
\[ f(x) = u(v(x)) \quad \Rightarrow \quad f^{\prime}(x) = u^{\prime}(v(x)) \cdot v^{\prime}(x) \]
|
\[ x_{n+1} = x_n - \frac{f(x_n)}{f^{\prime}(x_n)} \]
|
\[ \left( a^r \right)^s = a^{rs} \]
|
\[ \int\limits_{a}^{b} f(x) dx = F(b) - F(a) = \left[ F(x) \right]_{a}^{b} \]
|
\[ {n \choose k} = \frac{n!}{k! \cdot (n-k)!} \]
|
\[ P_A(B) = \frac{P(A \cap B)}{P(A)} \]
|
\[ \vec{a} \circ \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \circ \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3 \]
|
\[ \vec{a} \times \vec{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix} \]
|
Gleichungsvorschau:
Copy&Paste für mebis/Moodle:
Der alte Formeleditor mit anderer Tastenanordnung ist weiterhin hier und der ganz alte mit einer ausführlichen TeX-Referenz ist weiterhin hier online verfügbar.